High Temporal Frequency Diagnostics

HFIP Teleconference Feb 15, 2012

Motivation and Goals

- Reasons to consider looking at high frequency data:
 - To determine the representativeness of the operational model output seen by forecasters
 - For use as a forecaster tool for identifying the temporal evolution of important storm characteristics, like RMW or the onset of RI, once forecasters gain confidence that a model correctly simulates such features
 - For use as a diagnostic tool to help explain, and eventually improve, model storm evolution
- Goals of this presentation:
 - Demonstrate capabilities of high-frequency tropical cyclone forecast (HTCF) output
 - Motivate modeling groups to provide data

HTCF Output

- Text output at every timestep of the model
 - Run on inner-most nest, lowest model level

Basin	Storm ID	1 Forecast	Model	Sub- model	Forecast Second	Min SLP	Lat/Lon	of Min SLP	Max Wind	Lat/Lon o	of Max Wind	Lat/Lon (of Nest Center
AL,	, 12,	201109020000,	H3GP,	HR43,	0.00,	983.344,	16.581N,	49.931W,	66.573,	.6.827N,	50.260W,	16.619N,	49.846W
AL,	, 12,	201109020000,	H3GP,	HR43,	5.00,	983.227,	16.581N,	49.931W,	66.573,	.6.827N,	50.260W,	16.619N,	49.846W
AL,	, 12,	201109020000,	H3GP,	HR43,	10.00,	983.115	16.541N,	49.931W,	66.573,	16.827N,	50.260W	16.619N,	49.846W
AL,	, 12,	201109020000,	H3GP,	HR43,	15.00,	982.987	16.541N,	49.931W,	66.161,	16.827N,	50.260W	16.619N,	49.846W
AL,	, 12,	201109020000,	H3GP,	HR43,	20.00,	982.846	16.560N,	49.910W,	66.161,	16.827N,	50.260W	16.619N,	49.846W
AL,	, 12,	201109020000,	H3GP,	HR43,	25.00,	982.669	16.581N,	49.931W,	66.161,	16.827N <i>,</i>	50.260W	16.619N,	49.846W
AL,	, 12,	201109020000,	H3GP,	HR43,	30.00,	982.477	16.581N,	49.931W,	65.809,	16.827N,	50.260W	16.619N,	49.846W

Note:

Model: 2011 HFIP Stream 1.5 HWRF (27-9-3)

Current/Planned Availability

Output from 2011 HFIP HWRF is available

 The HWRF team is producing HTCF files during pre-implementation testing, and will be providing them for the operational model in real time during the 2012 season.

Intensity Considerations

- Raw HTCF Intensity output
 - Shows large variability over short periods of time
 - Many sources of variability

Intensity Considerations

- Raw HTCF output plus ATCF output
 - HWRF ATCF tracker uses instantaneous values of intensity, resulting in unrepresentative values

Intensity Products

- Smoothed Intensity forecast
 - Will produce an experimental smoothed HWRF forecast during the upcoming season
 - Not anticipated to improve skill, but it will provide more "representative" values
 - Provides some insight when the tracker quits

Intensity Products

- Intensity bounds product
 - Will produce an experimental smoothed HWRF forecast during the upcoming season
 - Not anticipated to improve skill, but it will provide more "representative" values

Structure Products/Diagnostics

- Track and Intensity Graphic
 - Similar to current wind swath product, but it only plots the RMW
 - Track derived from minimum pressure and the nest center (agrees well with ATCF track)

Structure Products/Diagnostics

- RMW Evolution over time
 - Derived from smoothed storm center and the position of the maximum wind
 - If data from multiple models were available, this could be used as a tool for quick intermodel structure comparisons

Structure Products/Diagnostics

- Storm-relative position of the maximum wind relative to the center, with respect to time
 - Also derived from smoothed storm center and the position of the maximum wind
 - Another way to quickly diagnose structure

Additional Diagnostics

- HTCF can also be used to identify periods within a forecast that are most critical to the evolution of the modeled storm
 - Indicates what time a forecaster should examine most closely when making a forecast, and what times should be closely studied for research purposes

Additional Diagnostics

(Graphic depicts position of minimum pressure, relative to the center of the storm)

- Trochoidal Oscillations (as in Marks et al, 2008 and Nolan et al, 2001)
 - Frequency and spatial scale of oscillations are consistent with observations in Hugo by NOAA aircraft

Additional Diagnostics

- HTCF can identify features that may not be seen in regular output
 - Every time the nest moves, the pressure oscillates, indicating the presence of gravity waves

NHC goals for output

- Model to model comparisons
 - Variability of structure and intensity
- Examine the "representativeness" of regular ATCF output for a variety of models/trackers
- Identify forecast hours that are most critical to the evolution of a given forecast
- Produce products for use by forecasters
 - RMW suite
 - Smoothed intensity (depending on tracker)